
0-deb:

A Container-First Linux
Distribution

Technical Whitepaper | Version 1.0

Prepared by: KoalaLab Engineering Team | Date: 10 January 2026

Executive Summary

0-deb is a container-first Linux distribution inspired by Debian, engineered specifically for ephemeral container
environments. Unlike general-purpose distributions that retrofit container support onto desktop-oriented
foundations, 0-deb is built from first principles around container semantics: images are immutable,
installations are always fresh, and runtime footprint must be minimal.

The distribution is powered by two purpose-built tools:

Debflow — A software supply chain system that builds Debian-compatible packages from upstream source
with bit-for-bit reproducibility, multi-source vulnerability tracking, and container-optimized maintainer scripts.
Debflow produces packages with enhanced metadata for transparent CVE identification and publishes a
security feed for accurate vulnerability scanning.

Captain (capt) — A drop-in replacement for apt designed exclusively for container build phases. Captain uses
the Pubgrub algorithm for dependency resolution, supports object storage backends for package archives,
and leaves zero footprint in final images through its command.

Together, these components deliver a distribution where every package is reproducible, every vulnerability is
accurately tracked, and every container image contains only what's necessary for the workload. Thus, making
the containers more secure, enabling faster boot time for applications alongside, (capt) being a drop-in
replacement for apt’s commands allows for developer experience famliarity.

capt goodbye

2

1. The Container Packaging Problem

Traditional Linux distributions carry assumptions incompatible with container deployment models. This
section examines the fundamental mismatches that 0-deb addresses.

1.1 Desktop-Oriented Package Defaults

Debian maintainer scripts assume persistent systems with init managers, interactive operators, and upgrade
paths. They invoke for service management, debconf for interactive configuration, and version
comparison logic for migrations. Containers are ephemeral—they're replaced entirely, not upgraded in place.
These assumptions cause unnecessary complexity.

1.2 Package Manager Overhead

Traditional package managers like apt are designed for long-lived systems. They maintain state databases,
cache metadata, and support upgrade/removal operations irrelevant to container builds. This infrastructure
persists in final images, consuming space and expanding the attack surface.

1.3 Vulnerability Attribution Across Naming Conventions

The National Vulnerability Database (NVD) and Debian use different naming conventions for identical
software. Security scanners querying NVD encounter systematic mismatches, e.g: Oracle’s Berkleydb is
packaged as db5.3. Also, scanners can only rely on Debian’s security feed as vendor data is also not provided
in package metadata.

2. 0-deb:

2.1 Components

systemctl

3

Debflow

(Package Build System)

0-deb Linux Distribution

Captain

(Package Manager)

Reproducible Builds

Rolling Release

Branch-aware CVE patching

Agentic script transformation

Minimal Dependency chains

Multi arch: amd64 + arm64

Pubgrub package solver

S3-compatible backends

Zero footprint cleanup

Install-only semantics

Drop-in apt replacement

2.2 Design Principles

Container-First: Every design decision optimizes for ephemeral, immutable container images and
deployment practices. Features irrelevant to this model are intentionally omitted.

Minimal Dependencies: Packages are built with reduced dependency chains, eliminating optional
components unnecessary for container workloads.

Zero Footprint: The package manager removes all traces of itself from final images, leaving only installed
software.

Single Rolling Release: 0-deb maintains one rolling release channel suited to container builds. No need to
track multiple distribution versions or coordinate upgrades across releases.

Transparent Security: Enhanced metadata enables vulnerability scanners to accurately identify CVEs without
manual mapping configuration.

3. Captain: The Container Package Manager

Captain (capt) is a purpose-built package manager for container builds, designed as a drop-in replacement for
apt.

3.1 Design Philosophy

Install-only: Package installation is the only supported operation. Deletion and upgrade are intentionally not
implemented—containers are replaced, not modified.

Zero Footprint: After installation, capt goodbye removes all Captain artifacts including itself, leaving only
installed packages.

Build-Phase Tool: Captain exists only during image build. It never runs in deployed containers.

3.2 Zero-Footprint Cleanup

The command removes all traces of Captain:capt goodbye

4

What Removescapt goodbye What Remains

Captain binary Installed package files

Package metadata and indices Created directories and symlinks

Download cache File permissions set by packages

Configuration files Installed packages metadata

3.3 Drop-in apt Replacement

Dockerfile migration is typically mechanical:

3.4 Object Storage Backend Support

Captain supports S3-compatible object storage for package archives:

3.5 Pubgrub Dependency Resolution

Captain uses the Pubgrub algorithm for version solving, providing:

Optimal Solutions: Finds solutions satisfying all constraints or proves none exist

Clear Error Messages: When resolution fails, explains exactly which constraints conflict

Performance: Efficient backtracking for complex dependency graphs

Determinism: Same inputs always produce same resolution

None

Shell

Before (apt)

RUN apt-get update && apt-get install -y nginx python3 \

 && apt-get clean && rm -rf /var/lib/apt/lists/*

After (capt)

RUN capt update && capt install nginx python3.13 && capt goodbye

Koala.sources file to be consumed by capt

deb [arch=amd64] s3://0deb-packages/0deb testing main

5

Apt Command Capt Equivalent Notes

capt updateapt update Fetch package indices

capt install pkgapt install pkg

capt install pkg=ver

Install packages

-

-

apt install pkg=ver

apt remove pkg Not implemented

Install specific package version

apt upgrade Not implemented

3.6 Why No Remove or Upgrade?

Captain intentionally omits package removal and upgrade:

Remove: In containers, if you don't want a package, don't install it. Multi-stage builds handle cases where
build dependencies shouldn't appear in final images. Removal logic adds complexity for a use case better
served by build patterns.

Upgrade: Containers are immutable. To "upgrade," rebuild the image with new package versions. In-place
upgrades imply a persistent state that containers shouldn't have. The single rolling release means the latest
packages are always available for new builds.

4. Security Pipeline

Debflow implements a comprehensive security pipeline with automated CVE discovery, branch-aware
patching, and security feed publishing.

4.1 Branch-Aware CVE Patching

CVE-2025-12345 is discovered for a package. All versions < 3.5.1 are vulnerable. As a response to this CVE, we
will release fixed version 3.5.1 and if necessary and feasible, we will backport the fix to 3.4.x branch in version

3.4.8-1.

Debflow correctly handles vulnerabilities across development branches:

fix_versions = [,]

fix_branch() =
fix_branch(-) =

Status Determination:

"3.5.1" "3.4.8-1"
"3.5.1" "3.5"

"3.4.1 1" "3.4"

6

Version State

Vulnerable3.4.0

Fixed (in 3.4.1-1 for 3.4.x)3.4.1-2

Vulnerable as fixed version for 3.5.x branch: 3.5.1 > 3.5.0

Fixed (Versions >= 3.5.1 aren’t vulnerable)

Fixed (Versions >= 3.5.1 aren’t vulnerable)

3.5.0

3.5.4

3.6.2

Status Meaning

Our version >= fix version from same branchfixed

No fix available or fix is for different branchopen

Explicitly marked as not vulnerable

CVE not in Debian Security Tracker data

not_affected

needs_review

4.2 Security Feed

The security feed provides machine-readable vulnerability status:

Feed semantics:

Published at: https://security.0-deb.dev/feed.json

7

Field Description

Fixed in version Xfixed_in: [{"version": "X"}]

Fixed in version 3.5.4-1 for 3.5.x branch
fixed_in: [{"version": "3.5.4-1",
“vulnerable_range”: “>=3.5 <3.5.4-1”}]

Open, no fix available

Not affected

fixed_in: []

fixed_in: [{"version": 0}]

JSON

{

 "package": {

 "CVE-2025-12345": {

 "fixed_in": [

 {

 "version": "3.5.1",

 "vulnerable_range": ">=3.5.0 <3.5.1"

 },

 {

 "version": "3.4.8-1",

 "vulnerable_range": "<3.4.8-1"

 }

]

 },

 "CVE-2025-9232": {

 "fixed_in": []

 }

 },

 "python3.13": {

 "CVE-2024-12718": {

 "fixed_in": [

 { "version": "3.13.3-1" }

]

 },

 "CVE-2024-3220": {

 "fixed_in": [

 { "version": 0 }

]

 }

 }

}

4.3 Grype Integration

0-deb publishes a security feed that is consumed by Anchore/Vunnel. When fully integrated with grype, it
enables Grype to recognise custom fixes specific to 0-deb.

The injected ZERODEB metadata is used on a custom patched version of Grype that enables scanning of 0-
debʼs packages without relying on distroʼs security feed:

Match packages to correct NVD products via embedded vendor/source name fields

Compare against upstream source versions

Correlate with 0-deb security feed for accurate status

4.4 Automated Patched Version Packaging

Once a patch is either released upstream or is available in debian sources, the rest of the process is fairly
automated to release the fixed version at the earliest.

1. Detects new versions via “uscanˮ monitoring of upstream and Debian

2. Generates updated Debflow manifest(debify.yaml) with new patches, checksums and snapshot sources

3. Applies agentic script transformation to maintainer scripts if it has changed in the debian sources

4. Builds and tests packages for arm64 and amd64

5. Updates security feed with new fix versions

6. Publishes to repository

This mirrors Debian's security response while maintaining 0-deb's container optimizations. In case CVE is fixed
upstream first, the pipeline will release a new version.

Hardened distroless containers with a distro-like experience

© 2026 KoalaLab Inc.

8

