A Container-First Linux
Distribution

Technical Whitepaper | Version 1.0
Prepared by: KoalaLab Engineering Team | Date: 10 January 2026

\

Executive Summary

0-deb is a container-first Linux distribution inspired by Debian, engineered specifically for ephemeral container
environments. Unlike general-purpose distributions that retrofit container support onto desktop-oriented
foundations, 0-deb is built from first principles around container semantics: images are immutable,
installations are always fresh, and runtime footprint must be minimal.

The distribution is powered by two purpose-built tools:

Debflow — A software supply chain system that builds Debian-compatible packages from upstream source
with bit-for-bit reproducibility, multi-source vulnerability tracking, and container-optimized maintainer scripts.
Debflow produces packages with enhanced metadata for transparent CVE identification and publishes a
security feed for accurate vulnerability scanning.

Captain (capt) — A drop-in replacement for apt designed exclusively for container build phases. Captain uses
the Pubgrub algorithm for dependency resolution, supports object storage backends for package archives,
and leaves zero footprint in final images through its capt goodbye command.

Together, these components deliver a distribution where every package is reproducible, every vulnerability is
accurately tracked, and every container image contains only what's necessary for the workload. Thus, making
the containers more secure, enabling faster boot time for applications alongside, (capt) being a drop-in
replacement for apt's commands allows for developer experience famliarity.

KoalaLab

1. The Container Packaging Problem

Traditional Linux distributions carry assumptions incompatible with container deployment models. This
section examines the fundamental mismatches that 0-deb addresses.

1.1 Desktop-Oriented Package Defaults

Debian maintainer scripts assume persistent systems with init managers, interactive operators, and upgrade
paths. They invoke systemct/ for service management, debconf for interactive configuration, and version
comparison logic for migrations. Containers are ephemeral—they're replaced entirely, not upgraded in place.
These assumptions cause unnecessary complexity.

1.2 Package Manager Overhead

Traditional package managers like apt are designed for long-lived systems. They maintain state databases,
cache metadata, and support upgrade/removal operations irrelevant to container builds. This infrastructure
persists in final images, consuming space and expanding the attack surface.

1.3 Vulnerability Attribution Across Naming Conventions

The National Vulnerability Database (NVD) and Debian use different naming conventions for identical
software. Security scanners querying NVD encounter systematic mismatches, e.g: Oracle’s Berkleydb is
packaged as db5.3. Also, scanners can only rely on Debian’s security feed as vendor data is also not provided
in package metadata.

2. O-deb:

2.1 Components

0-deb Linux Distribution

Debflow Captain
(Package Build System) (Package Manager)

» Reproducible Builds » Pubgrub package solver

» Rolling Release » S3-compatible backends

» Branch-aware CVE patching » Zero footprint cleanup

» Agentic script transformation » Install-only semantics

» Minimal Dependency chains * Drop-in apt replacement

» Multi arch: amd64 + armo64

KoalaLab

2.2 Design Principles

Container-First: Every design decision optimizes for ephemeral, immutable container images and
deployment practices. Features irrelevant to this model are intentionally omitted.

Minimal Dependencies: Packages are built with reduced dependency chains, eliminating optional
components unnecessary for container workloads.

Zero Footprint: The package manager removes all traces of itself from final images, leaving only installed
software.

Single Rolling Release: 0-deb maintains one rolling release channel suited to container builds. No need to
track multiple distribution versions or coordinate upgrades across releases.

Transparent Security: Enhanced metadata enables vulnerability scanners to accurately identify CVEs without
manual mapping configuration.

3. Captain: The Container Package Manager

Captain (capt) is a purpose-built package manager for container builds, designed as a drop-in replacement for
apt.

3.1 Design Philosophy

Install-only: Package installation is the only supported operation. Deletion and upgrade are intentionally not
implemented—containers are replaced, not modified.

Zero Footprint: After installation, capt goodbye removes all Captain artifacts including itself, leaving only
installed packages.

Build-Phase Tool: Captain exists only during image build. It never runs in deployed containers.

3.2 Zero-Footprint Cleanup

The capt goodbye command removes all traces of Captain:

What capt goodbye Removes What Remains
Captain binary Installed package files
Package metadata and indices Created directories and symlinks
Download cache File permissions set by packages
Configuration files Installed packages metadata

KoalaLab

3.3 Drop-in apt Replacement

Apt Command

Capt Equivalent

Notes

apt update

capt update

Fetch package indices

apt install pkg

capt install pkg

Install packages

apt install pkg=ver

capt install pkg=ver

Install specific package version

apt remove pkg

Not implemented

apt upgrade

Dockerfile migration is typically mechanical:

None

Before (apt)

Not implemented

RUN apt-get update && apt-get install -y nginx python3 \

&& apt-get clean && rm -rf /var/lib/apt/lists/*

After (capt)

RUN capt update && capt install nginx python3.13 && capt goodbye

3.4 Object Storage Backend Support

Captain supports S3-compatible object storage for package archives:

Shell

Koala.sources file to be consumed by capt
deb [arch=amd64] s3://0deb-packages/0Odeb testing main

3.5 Pubgrub Dependency Resolution

Captain uses the Pubgrub algorithm for version solving, providing:

Optimal Solutions: Finds solutions satistying all constraints or proves none exist

Clear Error Messages: When resolution fails, explains exactly which constraints conflict

Performance: Efficient backtracking for complex dependency graphs

Determinism: Same inputs always produce same resolution

KoalaLab

3.6 Why No Remove or Upgrade?

Captain intentionally omits package removal and upgrade:

Remove: In containers, if you don't want a package, don't install it. Multi-stage builds handle cases where
build dependencies shouldn't appear in final images. Removal logic adds complexity for a use case better
served by build patterns.

Upgrade: Containers are immutable. To "upgrade," rebuild the image with new package versions. In-place
upgrades imply a persistent state that containers shouldn't have. The single rolling release means the latest
packages are always available for new builds.

4. Security Pipeline

Debflow implements a comprehensive security pipeline with automated CVE discovery, branch-aware
patching, and security feed publishing.

4.1 Branch-Aware CVE Patching

CVE-2025-12345 is discovered for a package. All versions < 3.5.1 are vulnerable. As a response to this CVE, we

will release fixed version 3.5.1 and if necessary and feasible, we will backport the fix to 3.4.x branch in version
3.4.8-1.

Debflow correctly handles vulnerabilities across development branches:

fix versions=["3.5.1", "3.4.8-1"]
fix branch("3.5.1") ="3.5"
fix_branch("3.4.1-1")="3.4"

Version State
3.4.0 Vulnerable
3.4.1-2 Fixed (in 3.4.1-1 for 3.4.x)
3.5.0 Vulnerable as fixed version for 3.5.x branch: 3.5.1 > 3.5.0
3.5.4 Fixed (Versions >=3.5.1 aren’t vulnerable)
3.6.2 Fixed (Versions >=3.5.1 aren’t vulnerable)

Status Determination:

Status Meaning
fixed Our version >= fix version from same branch
open No fix available or fix is for different branch
not_affected Explicitly marked as not vulnerable
needs_review CVE not in Debian Security Tracker data

KoalaLab

4.2 Security Feed

The security feed provides machine-readable vulnerability status:

JSON

{
"package" : {
"CVE-2025-12345": {

"fixed in": [
{
"wversion": "3.5.1",
"vulnerable range": ">=3.5.0 <3.5.1"
} s
{
"wversion": "3.4.8-1",
"vulnerable range": "<3.4.8-1"
}
]
},
"CVE-2025-9232": {
"fixed in": []
}

>
"python3.13": {

"CVE-2024-12718": {
"fixed in": [
{ "version": "3.13.3-1" }

]

},
"CVE-2024-3220": {
"fixed in": [
{ "version": 0 }
]
}

}
}

Feed semantics:

Field Description
fixed_in: [{"version": "X"}] Fixed in version X
fixed in: [{"version": "3.5.4-1",

wvulnerable range’”: “>=3.5 <3.5.4-1"}]

Fixed in version 3.5.4-1 for 3.5.x branch

fixed in: []

Open, no fix available

fixed i1n: [{"version": O0}]

Published at: https://security.0-deb.dev/feed.json

Not affected

KoalaLab

4.3 Grype Integration

0-deb publishes a security feed that is consumed by Anchore/Vunnel. When fully integrated with grype, it
enables Grype to recognise custom fixes specific to 0-deb.

The injected ZERODEB metadata is used on a custom patched version of Grype that enables scanning of O-
deb’s packages without relying on distro’s security feed:

» Match packages to correct NVD products via embedded vendor/source name fields
» Compare against upstream source versions
» Correlate with 0-deb security feed for accurate status

4.4 Automated Patched Version Packaging

Once a patch is either released upstream or is available in debian sources, the rest of the process is fairly
automated to release the fixed version at the earliest.

Detects new versions via “uscan” monitoring of upstream and Debian

Generates updated Debflow manifest(debify.yaml) with new patches, checksums and snapshot sources
Applies agentic script transformation to maintainer scripts if it has changed in the debian sources
Builds and tests packages for arm64 and amdé64

Updates security feed with new fix versions

Publishes to repository

oA WD =

This mirrors Debian's security response while maintaining 0-deb's container optimizations. In case CVE is fixed
upstream first, the pipeline will release a new version.

Qe
]
Koalalab Hardened distroless containers with a distro-like experience
© 2026 KoalaLab Inc.

